1新能源电力系统概况及特点
对于传统的电力系统,主要是以天然气、煤炭、石油等一系列的一次性能源作为电力系统的重要能源。随着科学技术的日益更新,可再生能源的出现逐渐大规模开始替代传统的能源系统。二者之间最为重要的差别就是前者能够进行存储,有着较为稳定的发电空间模式,电力系统的双侧供应可调可控;然而后者主要是以再生能源为主要发电能源,其有着不可存储的特性,因此不确定性就更为明显,电力系统的双侧供应可调可控性较差。新能源的出现,就是为了能够弥补可再生能源的可调可控性不足,通过新能源电力系统的独特方式和创新技术,使电力系统能够在保证可调可控更稳定的状态下,保证可再生能源得到更加安全、高效的应用。
1.1高渗透率的可再生能源
新能源电力系统中的一项重要特征就是高渗透,也是结合我国的基本国情所决定,因为我国在新能源应用方面主要集中在新疆、甘肃等地,这种格局的界定根据地理位置确定。在未来的我国新能源电力系统的主要发展形势仍然会以普遍的集中形式,包含各地分布形式为主要策略,逐渐地远离大电网输送,消除中途输送的能源浪费,从而有效地保证新能源电力系统充分地利用可再生能源。
1.2侧向供应的多能源互补
新能源电力系统的着重发展方向是能够有效利用的可再生资源,运用电源、电网、负荷等方面的技术手段实现统一的协调互动,从而保证新能源电力系统的高效运作。对于侧向供应的多能源互补,主要体现在以下两个方面:一个方面是供应,利用风能、太阳能、水能、海洋能、地热能、生物质能等,这些永不枯竭的绿色能源,配备精确的预测技术,在最大限度上使新能源电力系统得到充分地发挥,将一系列能源之间的运作形成互补,从而减少因为自身稳定性差而出现波动的问题;另一个方面是需求,利用当前电力系统中的先进技术,使所有的用电用户准确地知道自己的用电情况,根据电力系统所提供的运行状态来实时掌握价格的变化,并及时地对自身电力使用情况进行用电调节。
2新能源电力系统优化控制方法
从当前我国电力系统发展的整体状态上来看,控制方法还需要不断改善和优化,在此过程中还要遵循协调与分解的基本原则。一方面要从新能源电力系统的整体方面考虑,另一方面也要从新能源电力系统的局部自主优化考虑。在新能源电力系统的优化控制过程中,多个方面的不稳定性都将随之产生,在难度上呈现递增趋势,局部与全局的协同性问题也在增加。因此,需要在以下几个方面对新能源电力系统优化控制的方法进行分析与探讨。
2.1新能源电力系统友好型控制方法
新能源电力系统友好型控制方法相对于传统的能源形势来讲,能够提供更高的电力输出,有效地提升新能源电力系统的稳定性。新能源通过各项科学分析,依据历史数据以及天文气象等信息,利用数据分析解读可控手段和方法,因此,新能源的分析预测已经成为了调控的重要手段。对于新能源电力系统的分析预测主要是针对其功率进行控制。当前功率预测可以分为3个等级:日、小时、分钟。就当前新能源电力发展的状态看,优化控制方法的功率预测分级已经成为不可缺少的一项方式方法。在未来新能源的道路上,需要更加精细、更加优化、更加稳定的友好控制。同时,沼气、蒸汽、火电、水电、核电、太阳能发电、潮汐发电、波浪发电等一系列能源之间的互通互补也将成为重要的发展方向。
2.2新能源电力系统多源互补控制方法
所谓的新能源电力系统多源互补控制方法,主要就是利用水利能源、煤炭能源等一系列传统的发电形式中的稳定性,来协调太阳能源、风力能源等可再生能源较为不稳定的电力输出,从而在多个能源相互之间补充的情况下,使电力系统达到相对平衡的状态。但是,也基于我国的实际国情,当前较为缺乏的就是能够储能灵活的能源,因此,在我国煤炭储量位居世界第三的前提下,就需要努力提升燃煤能源,以此来对当前较为薄弱的多个可再生能源进行互补,从而提升电力系统的利用率。
2.3新能源电力系统双侧资源控制方法
相对于传统意义上的电力系统,其发电的控制方法随着新能源电力的增加,以往的单纯依靠单侧资源控制已经不能够满足当前发展的需要。随着各行各业的发展,电能负荷的需求量成倍增长,单一的供给与需求平衡逐渐被打破。因此,在当前阶段新能源电力系统双侧资源控制方法所具有的独特双随机波动性,能够有效地解决资源合理分配的问题,从而减少误差提高稳定性,整体提升新能源电力系统的利用率。
3新能源电力系统关键技术创新
新能源电力系统的技术主要是通过其结构和运行,使得电力系统能够在稳定性较低的情况下保证新能源电力系统的安全运行,因此,不断的创新和发展是新能源电力所面临的重要问题。想要实现新能源电力系统优化控制,就要实现一系列的技术创新和配套机制,以促进系统的可调控性、安全性、稳定性、信息化、自动化、智能化水平的大幅度提升。
3.1电源响应技术
应用电源响应技术,主要是在技术能力上有所突破,适时引进国外先进的新能源发电、输送以及平抑电力波动等一些新技术,以提高新能源的电力发电与应用效率,重要的是需要通过开放电网,以此来实现所有电力系统的公平接入,利用新型的电网友好型发电技术与其他多种可再生能源互补,实现与源网的协同机制,并且不断地加强和完善清理能源的补偿机制,保障清洁能源电力系统的长效发展,同时开放电网的公平接入,建立新能源电力系统发展的新机制,促进新能源电力系统在“十三五”之后全面发展。
3.2电网响应技术
应用电网响应技术,主要是由于新能源电力存在电网振动的缺陷,使新能源电力无法在电网内大力输送,这是受其系统相关特征影响而产生的电压耐受力与通电能力低的现象。可通过采用合理的低电压、高电压、不对称穿越的方式,改变系统的奔向你通过,使电力系统电网存在一定的惯性。我国的新能源建设与实际地理位置相结合,构建了全新模式的电网机构,运用国外先进的电力输送方式,从而实现各地区之间的电力系统能够进行互通,使太阳能、水能、风能、生物能等一系列的相关可再生能源实现跨区域电力交易机制,并进行系统建设,充分发展新型电网结构与先进的输电方式,进一步实现电网的先进控制与安全防御功能。
3.3负荷响应技术
应用负荷响应技术,是因为新能源电力系统对外界环境的抗干扰能力不足,在外界产生比较严重的干扰时,电力系统的安全性受到严重影响,甚至导致系统功能瘫痪,这就需要提高系统承受高峰能力。同时还应利用发电设备的集中布局优势,充分在距离使用上有所发挥。通俗来讲就是将各种动力设备以及生理组织等在单位时间内承担协同电力额定。在此方面需要建立各项能源的供需协同响应机制,重点是在科学技术与智能调控管理,各种数据分析和大数据处理技术的研发,从而能够在今后一段时期内逐渐地适应全新的新能源电力系统的双侧供应互补。
3.4云端智能综合控制技术
由于大型系统的数据来源复杂多样,控制关系又错综复杂,对系统进行既有控制效率又有实施效果的改进,成为目前主要研究的课题。通过云技术的不断发展应用,云端智能综合控制技术被应用到新能源的电力系统中,一方面数据通过云存储技术实现了自由下载与使用,这使信息互通性大大加强;另一方面,系统规划与协调运行均可通过云计算、云处理技术得以实现,有效提高了系统的协调性;还有云端综合控制技术还完成了系统的智能化管理与控制,这也大大节省了系统资源。
3.5大数据系统技术
大数据技术应用近年来很受青睐,尤其像新能源电力这样的大系统结构,可通过对能量流、物质流、信息流的控制、分配与完成进行一系列的可协调性、稳定性以及能通性的分析,使信息传递更完整,更灵活。除此之外,大数据技术还具备清理、解读、存储等多项功能,尤其是新兴的大数据融合技术与可视化技术等应用,更为新能源电力大系统提供了广阔的发展空间。
4结束语
综上所述,在今后一段时期内,新能源电力系统优化控制方法及关键技术创新发展是我国需要不断深入研讨的一项重要内容,只有真正实现电力系统多项能源互补,能源之间协调存储,才能够最大程度充分利用可再生能源,最终使得可再生能源成为我国电力系统之中的首选。
参考文献
[1]刘吉臻.大规模新能源电力安全高效利用基础问题[J].中国电机工程学报,2013,33(16):1-8.
[2]刘吉臻,曾德良,田亮,等.新能源电力消纳与燃煤电厂弹性运行控制策略[J].中国电机工程学报,2015,35(21):5385-5394.
[3]冯双磊,王伟胜,刘纯,等.风电场功率预测物理方法研究[J].中国电机工程学报,2010,30(2):1-6.
[4]曾鸣,杨雍琦,李源非,等.能源互联网背景下新能源电力系统运营模式及关键技术初探[J].中国电机工程学报,2016,36(3):681-69.
作者:戴忠 单位:国网安徽电力节能服务有限公司
matlab曲线拟合和预测|基于Bernstein基函数拟合预测的
经济管理论文2017-01-14 07:51:58