高层建筑工程结构设计论文

时间:2017-01-20 20:30:01 来源:论文投稿

1风载作用

风载对高层建筑有着十分重要的影响,随着建筑高度的增高,结构对风载作用的敏感程度骤增.根据建筑物表面局部的体型系数和风压峰值,可以求的建筑物顶端的最大加速度,在此基础上,进一步计算风荷载对地基点的倾覆弯矩,从而评判风载对高层建筑的稳定性影响,此外,还应评判在风振作用下人的舒适度.风载作用下结构的风振总响应为:式中W0为调整后的基本风压值;βz为Z高度处风振系数;μs为风载体型系数;μz为风压高度变化系数.

2工程概况

某大厦位于浙江省乐清市清远路与双雁路的交叉路口处.大厦总建筑面积16733m2.大厦平面呈L形,长边45m,短边20m,宽17m.大厦分主楼和附楼两部分.地面以下主楼两层,附楼一层.地面以上主楼18层,附楼5层,1-5层为移动电话公司用房,1-5层高4.5m,6-18层为住宅,层高均为3m,其中19层机房、20层屋顶水箱部分缩进,形成露台.主楼设两台电梯和一座楼梯,楼梯可通至主楼屋顶.楼梯顶部设容积为50m3的水箱,电梯井筒顶部设机房.主楼高度58.5m.附楼1-5层为商场,主楼2-4层为办公用房,附楼屋顶设屋顶花园和公共娱乐休闲场所.附楼设楼梯两座,可通至附楼屋顶.地下1层设停车场,层高3.5m.地下2层设水池、发电机房、空调机房等,层高3.5m.总平面布置图如图3所示.

3结构设计

3.1基本设计资料

建筑物抗震设防重要性类别为丙类,建筑结构安全等级为二级,结构重要性系数γ0=1.0.根据《工程地质勘察报告》,地面以下15m为淤泥,属软弱土,地面至坚硬土顶面的距离约35m,即场地覆盖层厚度为35m,建筑场地类别为Ⅲ类,属不利地段.该地区地震基本烈度为7度,因此建筑物抗震设防烈度为7度.大厦框架结构抗震等级为三级,剪力墙抗震等级为二级.

3.2结构选型与布置

考虑到场地土为软弱土,为增加结构刚度,减少延性,大厦主体采用框架-剪力墙结构,剪力墙设在主楼中心,楼梯及电梯井四周,以提高大楼重要部位强度及安全性.主、附楼之间,考虑到地下水位高,留缝较难处理,基础采用厚板桩筏,主、附楼之间不设缝,先留出后浇带(宽1000mm,包括地下室底板及边墙),待主楼施工完毕、沉降基本稳定,两者再连为整体.预留后浇带时,钢筋不断,后浇带的混凝土强度等级C35.后浇带预留在主楼与附楼之间,靠附楼侧2m处.大楼高宽比为3.69,小于5;大楼主体埋深7米,大于1/15H=4米;柱的截面尺寸,主要由轴压比进行控制;梁的截面尺寸,主要由计算结果进行控制;地面以下淤泥较厚,承载能力低,因此采用桩筏基础,施作钢筋砼预制方桩.

3.3荷载标准值

恒载分为楼面均布恒载一级梁上线性分布恒载.楼板结构自重作为外部荷载手工输入程序计算.梁、柱及砼墙体自重,可设定参数由程序计算.限于篇幅,恒载值未列出,可依据规范查询.地震荷载本建筑抗震设防重要性类别为丙类,按7度抗震设防,Ⅲ类场地上的高层建筑,按《高层建筑混凝土结构技术规程》(JGJ3-2002)[6]第3.3条规定,必须计算地震作用.考虑两个方向的地震作用,且结构质量和刚度分布明显不对称,因而需计入双向水平地震作用下的扭转影响.风荷载根据《建筑结构荷载设计规范》(GB50009-2012)[7]的规定,基本风压值W0=0.55kN/m2,基本风压值得调整系数为1.1,调整后的基本风压值W0=0.61kN/m2.建筑物所在地的地面粗糙度为B类,即中小城镇.风载体型系数μs取1.4,风压高度变化系数及风振系数由程序自动计算.结构整体座标与风力作用方向的夹角为49.97°,考虑两个方向的风力作用.

3.4结构设计计算

结构计算,采用中国建筑科学研究院PKPMCAD工程部编制的系列软件.用PMCAD建立结构模型,运用多层及高层建筑结构三维分析与设计软件TAT进行上部结构计算,运用基础CAD软件JCCAD进行基础底板计算及桩基验算,并运用该系列软件绘制施工图.考虑到地基土为软弱土,对结构的嵌固作用不大,因此,取地下一层地面为结构嵌固端,其四周的混凝土墙,作为一种安全储备,不参加结构计算;屋顶的机房、水箱层,计算求得的水平地震作用应增大,但不下传;地震作用采用振型分解反应谱法计算,振型个数12个.程序自动模拟施工过程,恒载逐层加载,活载一次加载.用TAT计算时,活载满布且一次计算的结果,常比活载可能不利布置的实际情况小很多.因此,按恒、活载分开计算,考虑活载不利布置.活载的折减对基础设计有利.如果活载不折减,可能导致因桩数过多,而造成基础施工十分困难.梁面活载折减系数按规范要求,由计算机程序自动执行.柱、墙活载折减系数取法按荷载规范要求执行,可进行人机交互控制,修改各层活载折减系数.只对以柱、墙为支座的主梁调幅,调幅系数0.85,梁跨中正弯矩放大系数取1.2.高层建筑中,柱的截面尺寸往往较大,而梁的计算长度是从中到中的轴线距离,这样在柱端的弯矩已算到了柱中心,而往往偏大.可以考虑适当折减梁端弯矩,修正后的梁端弯矩不小于原弯矩的2/3.由于连梁两端刚度、剪力大,很可能会出现超筋情况.剪力墙的承载能力往往较高,连梁进入塑性状态后,允许其卸载给剪力墙,连梁刚度折减系数取0.7,梁扭转刚度折减系数取0.4.

4计算结果分析

4.1结构自振周期分析

结构前3个自振周期计算结果如表2所示,计算结果显示,结构的前3个自振周期(T1-T3)在正常范围内,没有异常.计算结果显示,结构x、y方向的前三个振型曲线连续、光滑,没有出现突然的转折点或不规则凹凸,表明结构竖向刚度变化较为均匀,设计指标符合要求.

4.2位移计算结果

通过对结构在水平载荷(地震荷载、风荷载)控制作用下的位移进行计算,得到各楼层x方向的节点最大水平位移结果如表3、表4所示,表中:Floor为层号;Node为x向累积位移最大节点号;DX为x向累积最大位移(mm);node为x向层间位移最大节点号;dx为x向层间最大位移(mm);dx/h为x向最大位移角;h为层间高(m).表3、表4的结构位移计算结果表明,在地震作用或风荷载的作用下,楼层的位移基本上是连续变化的,无明显的突变和折点,位移曲线为反S形曲线,表明结构布置较为合理可行.此外,在风荷载作用下,楼层层间位移与层高之比d/h<1/900,结构顶点位移与总高度之比D/H<1/950,均满足规范要求.

5结论

体型复杂的高层建筑在地质条件差的情况下,会产生许多结构设计问题,如结构选型与布置、荷载取值、主附楼之间的连接构造、基础的埋深、持力层的选择以及整体结构的计算等等.随着建筑高度的增加,包括地震作用、风载作用的水平荷载是控制结构设计的主要因素.因此在高层建筑设计工作应重点处理水平荷载对结构设计产生的影响,并对结构计算结果进行准确的分析与判断,使计算结果最大程度地反映建筑实际受力情况.

作者:黎杰 单位:中国水电顾问集团中南勘测设计研究院有限公司


更多社会科学论文详细信息: 高层建筑工程结构设计论文 论文代写
http://m.400qikan.com/lw-97564 论文代发

相关专题:农业工程学报 地理研究

相关论文
相关学术期刊
《食品与机械》 《建筑创作》 《世界海运》 《山西林业科技》 《化肥设计》 《冶金财会》 《煤炭科技》 《档案学研究》 《吉首大学学报:社会科学版》 《科技与企业》

< 返回首页